
Session 2768

Per Bothner
Consultant
Brainfood Inc.

XML Queries Compiled
to Bytecodes

Session 27682

Xquery

A new very-high-level language
standard from W3C for processing
XML-like data

Session 27683

Qexo

An implementation that compiles
XQuery programs directly to
bytecodes for the Java™ platform
(“Java bytecodes”)

Session 27684

Agenda

 Introduction to W3C’s new XQuery language

 Language introduction and feature overview:
 Generating XML/HTML
 Querying XML “databases”

 The Qexo implementation and its features

 Comparison with JavaServer Pages™ (JSP™)
technology and XSLT

 Conclusions; demo; questions

Session 27685

My Background

 Spearheaded the Gcc-based GCJ (GNU
Compiler for the Java™ platform) project
(1996–ongoing)

 Wrote Kawa (1996–), compiling a functional
language (Scheme) into the Java™ virtual
machine

 Wrote JEmacs (Emacs with Emacs Lisp
compiling into bytecodes, using Kawa and
the JFC/Swing API)

 Long involvement with GNU/Linux
 Long interest in high-level languages

and data types

Session 2768

XQuery: A Language for
Processing XML Data

Session 27687

A New Language From W3C

 XQuery is a programming language for XML

 Designed for processing of XML data

 A super-set (mostly) of XPath (used in XSLT)

 XSLT and XPath being revised at same time

 Designed by World Wide Web Consortium

 Standard hopefully to be released this year

Session 27688

XQuery Executive Summary

 A very high-level programming language

 Designed for querying, merging (joining),
and generating XML data sets

 Works on tree structures (DOM-like), not text

 One goal is “SQL for XML data-bases”

 No assignments or side-effects (updates may
be added later)

 Statically typed (optionally) and “optimizable”

Session 27689

Generating XML and HTML

 Most HTML-generating tools generate text

 This includes: JSP™ technology, ASP,
PHP, CGI

 Text is fine for final output, but not further
processing

 Most tools are statement-oriented:

 XSLT generates “result fragments”

 XQuery generates node sequences

print "now"

Session 276810

Expressions

 An XQuery “program” is an expression

 Can evaluate to a simple value:

 3+4 evaluates to the number 7

 An element constructor expression:

 evaluates to a node object, not a string

 No parsing needed to extract parts of a node

<title>some text</title>

Session 276811

Local Variables

 You can bind values to local variables, using
a let expression

 Can substitute values in element constructor

 Uses static (lexical) scoping (like the Java
programming language)

let $x := <bold>more text</bold>
 return <title> some {$x}</title>

Session 276812

Sequences

 Values can be sequences of simple values

 Comma operator 3,4 appends sequenes

 Sequences cannot be nested

 The children function returns a sequence
of child nodes of a given node:

evaluates to: X, <c>Y</c>

children(<a>X<c>Y</c>)

Session 276813

Superset of XPath

 Most XPath expressions are part of Xquery

 This includes most path expressions. Example:

 Get all sections with a title attribute of
"Answers", that are within the first chapter:

 This is a compact sub-language for selecting
parts from an XML data-set

./chapter[1]//section[@title="Answers"]

Session 276814

FLWR Expressions

 FLWR expressions have 3 parts:
 One or more for or let clauses

 A for loop binds a local variable for each
element of a sequence

 let binds a local variable to a value as a whole

 An optional where clause

 A result clause
for $ch in $doc/chapter
where $ch/@number <= 10
return <h2>{$ch/title}</h2>

Session 276815

'for' is like SQL 'select'

 Join of customers and orders, using SQL:

 Same join, using XQuery:

for $c in customers, $o in orders
where $c.cid=$o.cid and $o.oid="xx"
return $c.name

select customers.name
from customers, orders
where customers.cid=order.cid
 and orders.oid="xx"

Session 276816

Functions

 Parameters and results can be primitive
values, nodes, or sequences of either

define function descendent-or-self ($x)
{
 x,
 for $x in children($x)
 return descendent-or-self($z)
}
descendent-or-self(<a>XY)

Evaluates to:
<a>XY, X, Y, Y

Session 276817

Types

 XQuery is (optionally) statically typed

 Has type hierachy, type tests, coercions

 Also has less usual types:
 Nodes, elements with specific tags, etc;
 Sequence types;
 Regular expressions over tree types

 E.g., sequence of xhtml table rows:
(element html:tr)*

Session 276818

Typeswitch Expressions

 Convenient syntax for testing type of a value

typeswitch ($animal)
 case element duck
 return quack($animal)
 case element dog
 return woof($animal)
 default
 return "No sound"

Session 276819

An Application: Photo Album

 Application: organize digital photos (off-line)

 Reads index.xml creating linked html pages

 Previously used XSLT; re-wrote in XQuery

 Substantial extra functionality with similar
code size

 Much faster than earlier version using Xalan

 If curious browse: http://pics.bothner.com/

Session 2768

Implementing XQuery:
Qexo

Session 276821

Implementations

 Various groups are implementing Xquery

 W3C specification is still (as of March 2002)
incomplete and even inconsistent

 Thus so far only prototypes

 Will discuss Qexo (aka Kawa-XQuery),
my open-source implementation
 Compiler-based implementation
 Servlet support extension

Session 276822

Qexo: Compiling to Bytecodes

 Qexo (aka Kawa-XQuery) compiles XQuery
programs and expressions to bytecodes

 Uses Kawa compiler toolkit (which has
compiled Scheme to JVM bytecodes
since 1996)

 Qexo takes advantage of Kawa optimizations
and utilities

 Fast interactive response (eval, load)

Session 276823

Internals: Consumer interface

 Consumer: An “event” interface similar to
SAX DocumentHandler

 Used to transmit structured sequences

 Kawa compiler optimizes many operations if
“result context” is Consumer

 E.g., this XQuery program does not create a
“DOM”:

document("Dinosaurs.xml")/book/chapter

Session 276824

Internals: TreeList DOM

 Kawa uses TreeList to store nodes

 Uses a char buffer + an Object array

 More efficient than standard DOM:

 Normally just append new nodes to the buffer

 A node is an index into the TreeList’s buffer

 Sequences also use TreeList

Session 276825

Servlets

 Qexo can compile XQuery program to servlet

 XQuery result becomes servlet’s response

 Predefined variable $request is the
HttpServletRequest

 $request/pathInfo is shorthand for
invoke($request, "getPathInfo")

Session 276826

Easy as JSP™ Technology

 Simple JSP code example:

 Kawa-XQuery can do the same:

 JSP processor generates text

 XQuery generates node(s)

 Output stage turns that into XML or HTML

<p>Today is <%= new Date() %>.<p/>

<p>Today is {make("java.util.Date")}.</p>

Session 276827

HTTP Response Headers

 Can set server response headers:

 Same script works for both servlets and CGI

 Setting Content-type optional; default type
inferred from following data

 response-header returns a special datum;
does not “set” anything until final output

response-header("Content-type",
 "text/plain")

Session 276828

Debugging XQuery

 Compiling to byte-code aids debugging:

 Compilation-time errors refer to XQuery
source line

 Likewise for run-time stack traces

 Contrast JSP technology: Most errors refer to
generated Java™ file, not original JSP™ page

Session 276829

Qexo vs. Other Implementations

 Qexo is open source with liberal license

 Useful (though incomplete); available now

 Compiles to Java bytecodes

 Can interoperate with Java technology

 Same program can run under shell, as CGI,
or as servlet

Session 2768

Comparisons and
Conclusions

Session 276831

JSP Technology vs. XQuery

 Like JSP technology, a high-level language is
compiled down and run by servlet engine

 XQuery is a full programming language

 XQuery is a unified language, not a mix of
HTML and Java technology

 Can analyze XML data, which neither JSP or
Java technologies can do as conveniently

 XQuery at a higher level than Java technology

Session 276832

XSLT vs. XQuery

 XQuery does not have XSLT’s convenient
template model

 XQuery is usually less verbose

 Programming in XSLT (even just conditionals)
is tedious

 XQuery is a powerful programming language

 Optimization easier for XQuery

Session 276833

XQuery Conclusion

 XQuery is a powerful, optimizable language

 Useful for querying and merging XML datasets

 Useful for generating XML and HTML

 W3C has released working drafts

 Some problematic issues remain: static typing,
updating, syntax embedding in XML, …

 Prototype implementations can perform useful
tasks now

Session 276834

Check It Out!

Resources:

 XQuery: http://www.w3.org/XML/Query

 Qexo: http://www.qexo.org/

 Kawa: http://www.gnu.org/software/kawa/

 Me: mailto:per@bothner.com

Session 2768

Session 2768

Session 2768

