
Session 2768

Per Bothner
Consultant
Brainfood Inc.

XML Queries Compiled
to Bytecodes

Session 27682

Xquery

A new very-high-level language
standard from W3C for processing
XML-like data

Session 27683

Qexo

An implementation that compiles
XQuery programs directly to
bytecodes for the Java™ platform
(“Java bytecodes”)

Session 27684

Agenda

 Introduction to W3C’s new XQuery language

 Language introduction and feature overview:
 Generating XML/HTML
 Querying XML “databases”

 The Qexo implementation and its features

 Comparison with JavaServer Pages™ (JSP™)
technology and XSLT

 Conclusions; demo; questions

Session 27685

My Background

 Spearheaded the Gcc-based GCJ (GNU
Compiler for the Java™ platform) project
(1996–ongoing)

 Wrote Kawa (1996–), compiling a functional
language (Scheme) into the Java™ virtual
machine

 Wrote JEmacs (Emacs with Emacs Lisp
compiling into bytecodes, using Kawa and
the JFC/Swing API)

 Long involvement with GNU/Linux
 Long interest in high-level languages

and data types

Session 2768

XQuery: A Language for
Processing XML Data

Session 27687

A New Language From W3C

 XQuery is a programming language for XML

 Designed for processing of XML data

 A super-set (mostly) of XPath (used in XSLT)

 XSLT and XPath being revised at same time

 Designed by World Wide Web Consortium

 Standard hopefully to be released this year

Session 27688

XQuery Executive Summary

 A very high-level programming language

 Designed for querying, merging (joining),
and generating XML data sets

 Works on tree structures (DOM-like), not text

 One goal is “SQL for XML data-bases”

 No assignments or side-effects (updates may
be added later)

 Statically typed (optionally) and “optimizable”

Session 27689

Generating XML and HTML

 Most HTML-generating tools generate text

 This includes: JSP™ technology, ASP,
PHP, CGI

 Text is fine for final output, but not further
processing

 Most tools are statement-oriented:

 XSLT generates “result fragments”

 XQuery generates node sequences

print "now"

Session 276810

Expressions

 An XQuery “program” is an expression

 Can evaluate to a simple value:

 3+4 evaluates to the number 7

 An element constructor expression:

 evaluates to a node object, not a string

 No parsing needed to extract parts of a node

<title>some text</title>

Session 276811

Local Variables

 You can bind values to local variables, using
a let expression

 Can substitute values in element constructor

 Uses static (lexical) scoping (like the Java
programming language)

let $x := <bold>more text</bold>
 return <title> some {$x}</title>

Session 276812

Sequences

 Values can be sequences of simple values

 Comma operator 3,4 appends sequenes

 Sequences cannot be nested

 The children function returns a sequence
of child nodes of a given node:

evaluates to: X, <c>Y</c>

children(<a>X<c>Y</c>)

Session 276813

Superset of XPath

 Most XPath expressions are part of Xquery

 This includes most path expressions. Example:

 Get all sections with a title attribute of
"Answers", that are within the first chapter:

 This is a compact sub-language for selecting
parts from an XML data-set

./chapter[1]//section[@title="Answers"]

Session 276814

FLWR Expressions

 FLWR expressions have 3 parts:
 One or more for or let clauses

 A for loop binds a local variable for each
element of a sequence

 let binds a local variable to a value as a whole

 An optional where clause

 A result clause
for $ch in $doc/chapter
where $ch/@number <= 10
return <h2>{$ch/title}</h2>

Session 276815

'for' is like SQL 'select'

 Join of customers and orders, using SQL:

 Same join, using XQuery:

for $c in customers, $o in orders
where $c.cid=$o.cid and $o.oid="xx"
return $c.name

select customers.name
from customers, orders
where customers.cid=order.cid
 and orders.oid="xx"

Session 276816

Functions

 Parameters and results can be primitive
values, nodes, or sequences of either

define function descendent-or-self ($x)
{
 x,
 for $x in children($x)
 return descendent-or-self($z)
}
descendent-or-self(<a>XY)

Evaluates to:
<a>XY, X, Y, Y

Session 276817

Types

 XQuery is (optionally) statically typed

 Has type hierachy, type tests, coercions

 Also has less usual types:
 Nodes, elements with specific tags, etc;
 Sequence types;
 Regular expressions over tree types

 E.g., sequence of xhtml table rows:
(element html:tr)*

Session 276818

Typeswitch Expressions

 Convenient syntax for testing type of a value

typeswitch ($animal)
 case element duck
 return quack($animal)
 case element dog
 return woof($animal)
 default
 return "No sound"

Session 276819

An Application: Photo Album

 Application: organize digital photos (off-line)

 Reads index.xml creating linked html pages

 Previously used XSLT; re-wrote in XQuery

 Substantial extra functionality with similar
code size

 Much faster than earlier version using Xalan

 If curious browse: http://pics.bothner.com/

Session 2768

Implementing XQuery:
Qexo

Session 276821

Implementations

 Various groups are implementing Xquery

 W3C specification is still (as of March 2002)
incomplete and even inconsistent

 Thus so far only prototypes

 Will discuss Qexo (aka Kawa-XQuery),
my open-source implementation
 Compiler-based implementation
 Servlet support extension

Session 276822

Qexo: Compiling to Bytecodes

 Qexo (aka Kawa-XQuery) compiles XQuery
programs and expressions to bytecodes

 Uses Kawa compiler toolkit (which has
compiled Scheme to JVM bytecodes
since 1996)

 Qexo takes advantage of Kawa optimizations
and utilities

 Fast interactive response (eval, load)

Session 276823

Internals: Consumer interface

 Consumer: An “event” interface similar to
SAX DocumentHandler

 Used to transmit structured sequences

 Kawa compiler optimizes many operations if
“result context” is Consumer

 E.g., this XQuery program does not create a
“DOM”:

document("Dinosaurs.xml")/book/chapter

Session 276824

Internals: TreeList DOM

 Kawa uses TreeList to store nodes

 Uses a char buffer + an Object array

 More efficient than standard DOM:

 Normally just append new nodes to the buffer

 A node is an index into the TreeList’s buffer

 Sequences also use TreeList

Session 276825

Servlets

 Qexo can compile XQuery program to servlet

 XQuery result becomes servlet’s response

 Predefined variable $request is the
HttpServletRequest

 $request/pathInfo is shorthand for
invoke($request, "getPathInfo")

Session 276826

Easy as JSP™ Technology

 Simple JSP code example:

 Kawa-XQuery can do the same:

 JSP processor generates text

 XQuery generates node(s)

 Output stage turns that into XML or HTML

<p>Today is <%= new Date() %>.<p/>

<p>Today is {make("java.util.Date")}.</p>

Session 276827

HTTP Response Headers

 Can set server response headers:

 Same script works for both servlets and CGI

 Setting Content-type optional; default type
inferred from following data

 response-header returns a special datum;
does not “set” anything until final output

response-header("Content-type",
 "text/plain")

Session 276828

Debugging XQuery

 Compiling to byte-code aids debugging:

 Compilation-time errors refer to XQuery
source line

 Likewise for run-time stack traces

 Contrast JSP technology: Most errors refer to
generated Java™ file, not original JSP™ page

Session 276829

Qexo vs. Other Implementations

 Qexo is open source with liberal license

 Useful (though incomplete); available now

 Compiles to Java bytecodes

 Can interoperate with Java technology

 Same program can run under shell, as CGI,
or as servlet

Session 2768

Comparisons and
Conclusions

Session 276831

JSP Technology vs. XQuery

 Like JSP technology, a high-level language is
compiled down and run by servlet engine

 XQuery is a full programming language

 XQuery is a unified language, not a mix of
HTML and Java technology

 Can analyze XML data, which neither JSP or
Java technologies can do as conveniently

 XQuery at a higher level than Java technology

Session 276832

XSLT vs. XQuery

 XQuery does not have XSLT’s convenient
template model

 XQuery is usually less verbose

 Programming in XSLT (even just conditionals)
is tedious

 XQuery is a powerful programming language

 Optimization easier for XQuery

Session 276833

XQuery Conclusion

 XQuery is a powerful, optimizable language

 Useful for querying and merging XML datasets

 Useful for generating XML and HTML

 W3C has released working drafts

 Some problematic issues remain: static typing,
updating, syntax embedding in XML, …

 Prototype implementations can perform useful
tasks now

Session 276834

Check It Out!

Resources:

 XQuery: http://www.w3.org/XML/Query

 Qexo: http://www.qexo.org/

 Kawa: http://www.gnu.org/software/kawa/

 Me: mailto:per@bothner.com

Session 2768

Session 2768

Session 2768

