
<Insert Picture Here>

Speedy Scripting: Productivity and Performance

Per Bothner
Oracle / GNU

2

Agenda

• "Scripting" vs "programming"
• Does scripting language performance matter?
• Best of both styles?
• Some languages: Scala, JRuby, Clojure, Kawa
• Some benchmark numbers
• Some issues in language design

3

Who am I?

• Hired by Sun to work on JavaFX Script compiler
• Past technical lead for GCJ (gcc-compiler-based

ahead-of-time compiler for Java), at Cygnus Solutions
• Lead for Kawa, one of the first compilers for a

dynamic language on the JVM (starting 1996, at
Cygnus)

• Various other Open-Source and GNU contributions

4

Disclaimer

• This mostly describes non-Sun/non-Oracle work
• Does not necessarily reflect Oracle views
• No language to be discussed (except Java!) is owned,

endorsed, or supported by Oracle

5

Scripting Languages are Nice!

• Compilation is missing/optional/automatic
• real-eval-print interfaces (exploratory programming)
• Less boilerplate (don't need class + main method)
• Simpler type systems, optional or no type specifiers
• Flexible/dynamic name and type resolution
• Execution of "incomplete" program aids incremental

development
• Makes programmers productive and happy!
• Popular JVM examples: JRuby, Jython, Groovy, ...

6

Compiled "Programming" Languages are Nice

• Fast execution
• Good compile-time error-checking
• Good types; sophisticated type systems
• Easier for tools to figure out what is going on
• People, too
• Makes hardware, purchasing agents, and the

environment happy!
• Popular JVM examples: Java, Scala, ...

7

Everybody Wants to Combine the Best of Both

• Popular scripting languages are compiled to (some
kind of) bytecode

• JSR-292 and other work to speed up dynamic
languages

• Compiled languages support "scripting" (eval,
javax.script) and a read-eval-print-loop

8

Does Script Language Performance Matter?

• Not for the classic small script for doing modest jobs
• But as people get comfortable with a scripting

language, they use them for more and more and
bigger and bigger tasks

• At some point people hit "the wall" [Norm Walsh] - the
job is big enough that run-time is a problem

• Example: JavaScript performance is starting to matter

9

Of Course We Also Care About ...

• Programmer productivity
• Application robustness
• Extensibility and maintainability
• Finding (or better: avoiding) bugs

10

Semi-solution:
Use "Appropriate Language For Each Job"

• Sometimes needed, but can be a hassle
• Incompatible functionality, object models, type

systems. (Need to use lowest-common-denominator
values.)

• Many people aren't fluent in multiple languages

11

On the “Programming Language” end:
Scala - "the Better Java"

• Strongly typed, research-based
• Similar to Java performance
• Very expressive - concise powerful programs
• May be intimidating to some

12

At the “Scripting” End:
Popular Languages

• Jython
• JRuby
• Groovy
• PHP
• JavaScript
• Issues with performance, error-detection,

"programming in the large"

13

Is There a “Golden Mean”?

14

Clojure

• A relatively new Lisp-like JVM language
• Uses immutable arrays, maps, etc
• Especially good for parallel (multi-threaded) execution

15

Thorn

• Interesting new language from IBM Research +
Purdue

• Patterns
• Good parallelism story
• Syntactic extension
• OOPSLA '09 paper is recommended reading
• Not ready for production use

16

Kawa

• Dialect of Scheme - a mostly-functional language
• Scheme is standardized, many implementations
• Extensible syntax (hygienic macros)
• Continuous development and use since 1996

17

Kawa Performance

• True compiler
• Compiler can save class files, but is also fast enough

for “load-and-go”
• Primarily lexical name binding, but dynamic is

available
• First-class functions, efficient multiple inheritance
• Compile-type optimization and specialization
• Type specifiers are optional - otherwise uses type

inference or run-time lookup/checking
• Fast!

18

Computer Languages Benchmark Game -
(“shootout”)

1.5 52.1 46.8 1.7
73.9 1.8

2.1 7.0 9.1 2.0
1.2 2.6 timeout 1.1

5.1 115.3 1.0
0.3 1.6 0.6
1.6 3.0 1.0
1.1 timeout 1.0

47.1 1.0

Scala Clojure Jruby Kawa
fannkuch
fasta
knucleotide
mandelbrot
nbody
pidigits
regexdna
spectralnorm
threadring

• Multiple solutions of multiple problems
• See http://shootout.alioth.debian.org
• Runtime relative to Java

http://shootout.alioth.debian.org/

19

Performance Factors in Language Design

• Type specifications should be available and optional
• Name scope should lexical (compiler-analyzable)
• Default scope should be script-local (to aid type-

inference and other analysis)
• Access to primitive arithmetic, Java arrays, etc
• Think about performance issues from the start

20

Type Specifications

• Good for performance, catching errors,
documentation

• Traditional static (strict) typing: Compiler rejects code
if it cannot prove value matches target type

• This can be tedious, and seems to require non-trivial
type systems (generics, to start with)

• Combine optional types with type inference
• Optimistic static typing: Compiler rejects code if it can

prove value cannot match target type
• Lots of research: gradual typing, type inference, ...

21

Declarations

• Variable declarations are good
• Lexical scoping and name looking are good
• Compiler should be able to map variable reference to

declaration
• Thus: Variable declaration need to be compact
• At least for immutable (final) variables
• Likewise: compiler should be able to figure out which

(possibly-indirect) function is called - ... or (important!)
complain about an undefined function

• Basis for most optimization and error-checking

22

Avoid String-based APIs

• Constructing XML data or SQL queries should be
done functionally

• Using string-pasting is very error-prone - and risks
injection attacks

• Using library functions or special syntax allows
compiler to catch errors

• Example: XML literals evaluate to XML Nodes
• (Not primarily a performance issue, since ultimate

result are often strings.)

23

Complex Object Construction

• Creating e.g. Swing components is very verbose
• Better some kind of keyword-based constructors
• Groovy has SwingBuilder
• Scala has library making good use of Scala features

24

Swing Frame with Button using Kawa

(JFrame
 title: "Hello!"
 (JButton
 text: "Click me!"
 tool-tip-text: "click here")))

• No Swing-specific library or “magic”
• Compiler looks for set, add, valueOf methods
• Static typing makes this easier – no runtime reflection

25

Single Abstract Method conversion

• One of the uses of closures (in Java and otherwise):
• A SAM class or interface has one abstract method
• Can use a lambda expression (closure object)
• Compiler creates anonymous class

(my-click-label:addActionListener
 (lambda (evt)
 (my-click-action)))

26

Expression-oriented Programming

• Use expressions that return results, not side-effects
• E.g.: "Hello!"
• not: print "Hello!"
• Expressions are less verbose and more composable
• Use list comprehensions rather than Java-style loops
• Example: Part of SQL's power is because you can

compose query expressions
• Compiler can optimize

27

Avoid Side-effects

• Multi-CPU computers requires more parallelism
• Compilers need freedom to re-order or parallelize
• This is easier with functional / side-effect-free

computations
• Thus functional languages becoming more important
• Haskell (GHC) is sometimes faster than Java in the

"shootout"
• (Haskell is very powerful and compact – but probably

too scary for most)

28

Conclusion

• Performance of scripting languages matter
• Language design matters for performance
• Both language designers and programmers need to

think in terms of expressions, composable building
blocks, and avoiding side-effects

29

Links

• Kawa: http://gnu.org/software/kawa/
• Clojure: http://clojure.org/
• Scala: http://scala-lang.org/
• JRuby: http://jruby.org/
• Thorn: http://thorn-lang.org/
• Haskell: http://haskell.org/
• or just use your favorite search engine
• Per Bothner http://per.bothner.com

per@bothner.com or per.bothner@oracle.com

http://gnu.org/software/kawa/
http://clojure.org/
http://scala-lang.org/
http://jruby.org/
http://thorn-lang.org/
http://haskell.org/
http://per.bothner.com/
mailto:per@bothner.com
mailto:per.bothner@oracle.com

30

	splash page
	Agenda
	who-am-I
	Disclaimer
	Scripting Languages are Nice!
	programming-languages-are-nice
	everybody-wants-to-combine-best-of-both
	does-performance-matter?
	we-also-care-about
	use-multiple-languages
	Scala
	Too soft?
	Golden-mean?
	clojure
	thorn
	kawa
	kawa-performance
	shootout-results
	performance-features-in-languages-design
	type-specifications
	declarations
	avoid-string-based-APIs
	complex-object-construction
	swing-frame-with-button-in-kawa
	SAM-conversion
	expression-oriented
	avoid-side-effects
	conclusion
	links
	Oracle-logo

